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Summary of main results
I. Efficient methods/algorithms

I High-order finite elements

I Adaptive meshes, resolving
viscosity variations

I Geometric multigrid (GMG)
preconditioners for elliptic
operators

I Novel GMG based BFBT/LSC
pressure Schur complement
preconditioner

I Inexact Newton-Krylov method

I H−1-norm for velocity residual in
Newton line search

II. Scalable parallel implementation

I Matrix-free stiffness/mass
application and GMG smoothing

I Tensor product structure of finite
element shape functions

I Octree algorithms for handling
adaptive meshes in parallel

I Algebraic multigrid (AMG) as
coarse solver for GMG avoids full
AMG setup cost and large matrix
assembly

I Parallel scalability results up to
16,384 CPU cores (MPI)

1. Mantle flow

Model equations for Earth mantle flow
Rock in the mantle moves like a viscous, incompressible fluid on time scales of
millions of years. From conservation of mass and momentum, we obtain that
the flow velocity can be modeled as a nonlinear Stokes system.

−∇ ·
[
µ(T,u) (∇u +∇u>)

]
+∇p = f (T )

∇ · u = 0

u . . . velocity
p . . . pressure
T . . . temperature
µ . . . viscosity

The viscosity depends exponentially on the temperature (via an Arrhenius re-
lationship), on a power of the second invariant of the strain rate tensor, and
incorporates plastic yielding. The right-hand side forcing, f , is derived from the
Boussinesq approximation and depends on the temperature.

Effective viscosity field and adaptive mesh resolving narrow plate boundaries (shown in red).

(Visualization by L. Alisic)

Solver challenges
What causes the demand for scalable solvers for high-order discretizations on
adaptive grids? — The severe nonlinearity, heterogeneity, and anisotropy of the
Earth’s rheology:
I Up to 6 orders of magnitude viscosity contrast; sharp viscosity gradients due

to decoupling at plate boundaries
I Wide range of spatial scales and highly localized features with respect to

Earth radius (∼6371 km): plate thickness ∼50 km & shearing zones at plate
boundaries ∼5 km

I Desired resolution of ∼1 km results in O(1012) degrees of freedom on a uni-
form mesh of Earth’s mantle, therefore adaptive mesh refinement is essential

I Demand for high accuracy leads to high-order discretizations

2. Scalable parallel Stokes solver

Parallel octree-based adaptive mesh refinement (p4est)
I Identify octree leaves with hexahedral elements

I Octree structure enables fast parallel adaptive oc-
tree/mesh refinement and coarsening

I Octrees and space filling curves enable fast neighbor
search, repartitioning, and 2 : 1 balancing in parallel

I Algebraic constraints on non-conforming element
faces with hanging nodes enforce global continuity
of the velocity basis functions

I Demonstrated scalability to O(500K) cores (MPI)

High-order finite element discretization of the Stokes system{
−∇ ·

[
µ (∇u +∇u>)

]
+∇p = f

∇ · u = 0

discretize with−−−−−−−−→
high-order FE

[
A B>

B 0

] [
u
p

]
=

[
f
0

]
I High-order finite element shape functions
I Inf-sup stable velocity-pressure pairings: Qk × Pdisc

k−1 with 2 ≤ k

I Locally mass conservative due to discontinuous pressure space
I Fast, matrix-free application of stiffness and mass matrices
I Hexahedral elements allow exploiting the tensor product structure of basis

functions for a high floating point to memory operations ratio

Linear solver: Preconditioned Krylov subspace method
Fully coupled iterative solver: GMRES with upper triangular block precondition-
ing [

A B>

B 0

]
︸ ︷︷ ︸

Stokes operator

[
Ã B>

0 −S̃

]−1
︸ ︷︷ ︸
preconditioner

[
u′

p′

]
=

[
f
0

]

Approximating the inverse of the viscous stress block, Ã−1 ≈ A−1, is well suited
for multigrid methods. Next, find an approximation for the inverse Schur com-
plement, S̃−1 ≈ S−1 := (BA−1B>)−1.

BFBT/LSC Schur complement approximation S̃−1

Improved BFBT / Least Squares Commutator (LSC) method:

S̃−1 = (BD−1B>)−1(BD−1AD−1B>)(BD−1B>)−1

with diagonal scaling, D := diag(A). Derived from the least squares minimizer
of a commutation relationship of A and B>. Here, approximating the inverse of
the discrete pressure Laplacian, (BD−1B>), is well suited for multigrid methods.

3. Stokes solver robustness with scaled BFBT
Schur complement approximation

The subducting plate
model problem on a
cross section of the
spherical Earth domain
serves as a benchmark
for solver robustness.

Subduction model viscosity field.

Multigrid parameters:
GMG for Ã: 1 V-cycle,
3+3 smooth
AMG (PETSc’s GAMG)
for (BD−1B>):
3 V-cycles, 3+3 smooth

Robustness with respect to plate coupling strength
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Convergence for solving Au = f (red), Stokes system with BFBT (blue), Stokes system with viscosity weighted

mass matrix as Schur complement approximation (green) for comparison to conventional preconditioning.

Robustness with respect to plate boundary thickness

10 km

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES
restart

GMRES iteration

l2
 n

o
rm

 o
f

||
re

s
id

u
a
l|
| 
/ 
||
in

it
ia

l 
re

s
id

u
a
l|
|

 

 

10km_viscous_stress

10km_Stokes_with_BFBT

10km_Stokes_with_mass

5 km

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES
restart

GMRES iteration

l2
 n

o
rm

 o
f

||
re

s
id

u
a
l|
| 
/ 
||
in

it
ia

l 
re

s
id

u
a
l|
|

 

 

5km_viscous_stress

5km_Stokes_with_BFBT

5km_Stokes_with_mass

2 km

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES
restart

GMRES iteration

l2
 n

o
rm

 o
f

||
re

s
id

u
a
l|
| 
/ 
||
in

it
ia

l 
re

s
id

u
a
l|
|

 

 

2km_viscous_stress

2km_Stokes_with_BFBT

2km_Stokes_with_mass

Convergence for solving Au = f (red), Stokes system with BFBT (blue), Stokes system with viscosity weighted

mass matrix as Schur complement approximation (green) for comparison to conventional preconditioning.

4. Parallel adaptive high-order geometric multigrid
The multigrid hierarchy of nested meshes is generated from an adaptively re-
fined octree-based mesh via geometric coarsening:
I Parallel repartitioning of coarser meshes for load-balancing; repartitioning of

sufficiently coarse meshes on subsets of cores
I High-order L2-projection of coefficients onto coarser levels; re-discretization

of differential equations at each coarser geometric multigrid level

I As the coarse solver for geometric multigrid, AMG (PETSc’s GAMG) is in-
voked on only small core counts

I Geometric multigrid for the pressure Laplacian is problematic due to the dis-
continuous modal pressure discretization Pdisc

k−1; here, a novel approach is
taken by re-discretizing with continuous nodal Qk basis functions

Multigrid hierarchy of viscous stress Ã

GMG
high-
order
linear

0 0

1 1

2 2

AMG2 2

3 3

4

direct solve

Multigrid hierarchy of pressure Laplacian

smoothing with (BD−1B>)0 0

GMG
high-
order
linear

0 0

1 1

2 2

AMG2 2

3 3

4

direct solve

I GMG smoother: Chebyshev accelerated Jacobi (PETSc) with matrix-free
high-order stiffness apply, assembly of high-order diagonal only

I GMG smoother for (BD−1B>), discontinuous modal: Chebyshev accel-
erated Jacobi (PETSc) with matrix-free apply and assembled diagonal

I GMG restriction & interpolation: High-order L2-projection; restriction and
interpolation operators are adjoints of each other in L2-sense

I GMG restriction & interpolation for (BD−1B>): L2-projection between dis-
continuous modal and continuous nodal spaces

I No collective communication in GMG cycles needed

5. Convergence dependence on mesh size and
discretization order

h-dependence using geometric multigrid for Ã and (BD−1B>)

The mesh is increasingly refined while the discretization stays fixed to Q2×Pdisc
1 .

Performed with subducting plate model problem (see above). (Multigrid param-
eters: GMG for Ã: 1 V-cycle, 3+3 smoothing; GMG for (BD−1B>): 1 V-cycle,
3+3 smoothing)
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Solve
(
BD−1B>

)
p = g
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Solve Stokes system
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p-dependence using geometric multigrid for Ã and (BD−1B>)

The discretization order of the finite element space increases while the mesh
stays fixed. Performed with subducting plate model problem (see above). (Multi-
grid parameters: GMG for Ã: 1 V-cycle, 3+3 smoothing; GMG for (BD−1B>):
1 V-cycle, 3+3 smoothing)

Solve Au = f
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Remark: The deteriorating Stokes convergence with increasing order is due to a deteriorating approximation of the

Schur complement by the BFBT method and not the multigrid components.

6. Parallel scalability of geometric multigrid

Global problem on adaptive mesh of the Earth

I Viscosity is generated from real Earth data

I Heterogeneous viscosity field exhibits 6 orders of
magnitude variation

I Adaptively refined mesh (p4est library) down to
∼0.5 km local resolution; Q2 × Pdisc

1 discretization

I Distributed memory parallelization with MPI

Stampede at the Texas Advanced Computing Center

16 CPU cores per node (2 × 8 core Intel Xeon E5-2680)
32GB main memory per node (8 × 4GB DDR3-1600MHz)
6,400 nodes, 102,400 cores total, InfiniBand FDR network

Weak scalability using adaptively refined Earth mesh
Normalized time∗ based on the setup and
solve times for solving for velocity u in:

Au = f

Normalized time∗ based on the setup and
solve times for solving for pressure p in:(

BD−1B>
)
p = g

2048 4096 8192 16384
0

0.5

1

1.5

1
1.2

0.97 0.931
1.24 1.15

1.34

number of cores

Normalized time∗ relative to 2048 cores

T/(N/P ) T/(N/P )/G

2048 4096 8192 16384
0

0.5

1

1.5

1
0.83 0.84

0.64

1 1.09 1.08 1.18

number of cores

Normalized time∗ relative to 2048 cores

T/(N/P ) T/(N/P )/G

∗Normalization explanation:

T/(N/P ) . . . . . . Scalability of algorithms & implementation
T/(N/P )/G . . . Scalability of implementation

T . . . setup+ solve time
N . . . degrees of freedom (DOF)
P . . . number of CPU cores
G . . . number of GMRES iterations

Detailed timings for solving Au = f

#cores
velocity

DOF
#levels

GMG, AMG
setup time (s)
GMG, AMG, total

solve
time (s) #iter

2048 637M 7, 4 10.2, 14.3, 24.6 2298.0 402
4096 1155M 7, 4 12.8, 28.6, 41.4 2482.5 389
8192 2437M 8, 4 15.2, 15.6, 30.8 2129.5 339

16384 5371M 8, 4 29.2, 51.0, 80.2 2198.4 279

Detailed timings for solving
(
BD−1B>

)
p = g

#cores
pressure

DOF
#levels

GMG, AMG
setup time (s)
GMG, AMG, total

solve
time (s) #iter

2048 125M 7, 3 11.3, 0.9, 12.2 857.2 125
4096 227M 7, 4 12.3, 2.2, 14.5 638.0 95
8192 482M 8, 3 18.1, 1.5, 19.7 684.0 97

16384 1042M 8, 4 26.6, 9.1, 35.7 546.2 68

Remark: The number of GMRES iterations until convergence is reducing as the mesh is refined. This is due to an

increasingly better resolution of the variations in the viscosity.

Strong scalability using fixed adaptive Earth mesh
Efficiency based on the setup and solve
times for solving for velocity u in:

Au = f

Efficiency based on the setup and solve
times for solving for pressure p in:(

BD−1B>
)
p = g

2K 4K 8K 16K
0

0.5

1
1

0.85
0.59 0.5

number of cores

Efficiency rel. to 2K

4K 8K 16K
0

0.5

1
1 0.91

0.68

number of cores

Efficiency rel. to 4K

2K 4K 8K 16K
0

0.5

1
1

0.880.81
0.69

number of cores

Efficiency rel. to 2K

4K 8K 16K
0

0.5

1
1

0.72
0.57

number of cores

Efficiency rel. to 4K

Problem size: 637M
#iterations: 401 (±1)

#
setup time (s)
GMG, AMG, total

solve
time (s)

2K 10.2, 14.3, 24.6 2298.0
4K 8.6, 16.4, 25.0 1327.5
8K 12.5, 27.2, 39.7 938.4

16K 11.4, 24.3, 35.8 544.9

Problem size: 1155M
#iterations: 388 (±1)

#
setup time (s)
GMG, AMG, total

solve
time (s)

2K — —
4K 12.8, 28.6, 41.4 2482.5
8K 10.2, 38.5, 48.7 1325.9

16K 17.0, 47.9, 64.9 858.6

Problem size: 125M
#iterations: 125 (±2)

#
setup time (s)
GMG, AMG, total

solve
time (s)

2K 11.3, 0.9, 12.2 857.2
4K 7.8, 1.1, 8.9 487.1
8K 7.7, 1.5, 9.2 256.3

16K 7.8, 2.4, 10.2 147.6

Problem size: 227M
#iterations: 96 (±1)

#
setup time (s)
GMG, AMG, total

solve
time (s)

2K — —
4K 12.3, 2.2, 14.5 638.0
8K 17.0, 9.9, 26.9 430.8

16K 13.5, 4.4, 17.9 269.1

7. Scalable nonlinear Stokes solver:
Inexact Newton-Krylov method

I Newton update is computed inexactly via Krylov subspace iterative method

I Krylov tolerance decreases with subsequent Newton steps to guarantee su-
perlinear convergence

I Number of Newton steps is independent of the mesh size

I Velocity residual is measured in H−1-norm for backtracking line search; this
avoids overly conservative update steps � 1 (evaluation of residual norm
requires 3 scalar constant coefficient Laplace solves, which are performed
by PCG with GMG preconditioning)

I Grid continuation at initial Newton steps: Adaptive mesh refinement to re-
solve increasing viscosity variations arising from the nonlinear dependence
on the velocity

Convergence of inexact Newton-Krylov (4096 cores)
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nonlinear residual

Krylov residual

Plate velocities at nonlinear solution.

Note: Adaptive mesh refinements after the first four Newton steps are indicated by black vertical lines. 642M

velocity & pressure DOF at solution, 473 min total runtime on 4096 cores.
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